Probabilistic Intelligent Agent Approach to Design of Alerting Systems

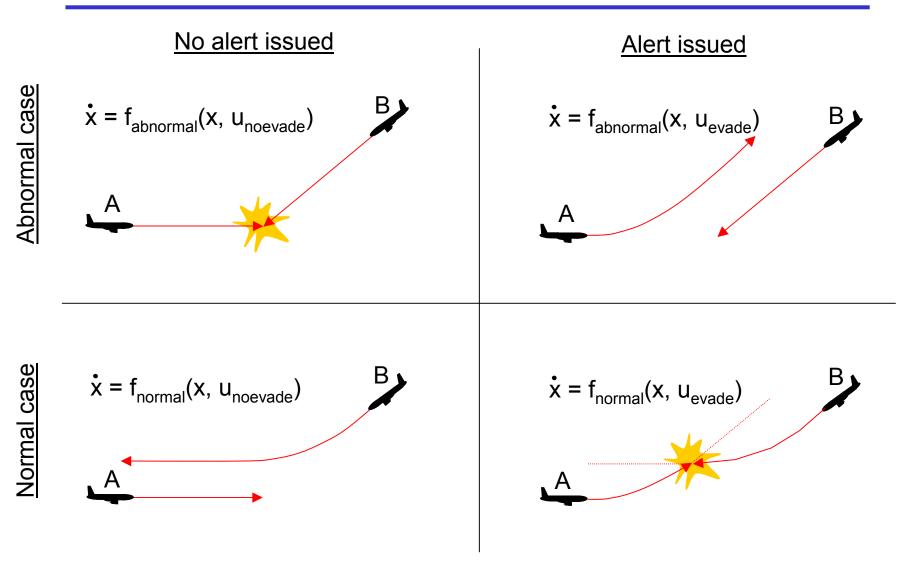
Lee Winder
Jim Kuchar
International Center for Air Transportation

FAA/NASA Joint University Program
Ohio University
June 13, 2002

Alerting Systems

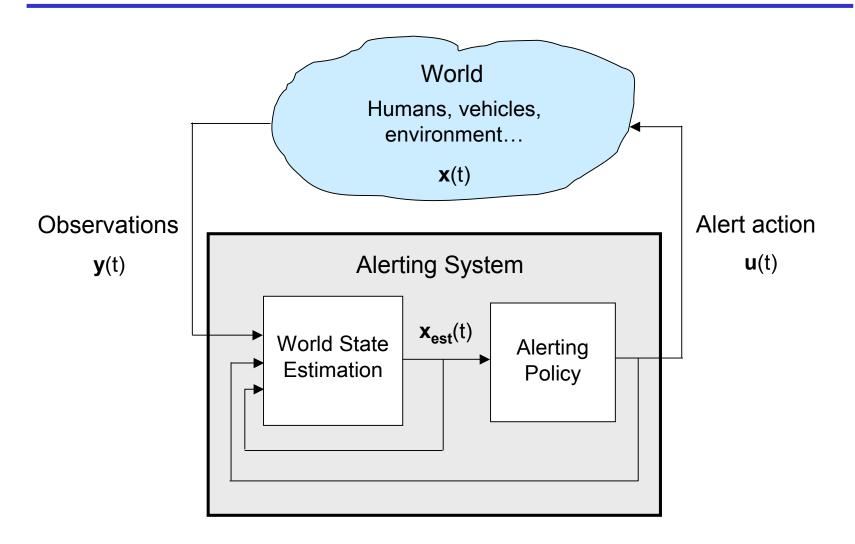
<u>Alerting System</u>: Automation that monitors another system and issues alert guidance to human operators when necessary to avoid some category of incident.

Importance of World Dynamics to an Alerting Decision



A good world dynamic model is critical in choosing the alert action

Generalized Alerting System as Intelligent Agent*



Two phases of alerting: world state update and alert action selection

(*Diagram adapted from Kaelbling, et. al.)

World Model Class Parameter: Car Encounters

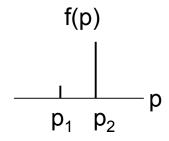
Class p₁: Failure of lane-keeping by A or B

$$\dot{\mathbf{z}} = \mathbf{f}_{fail}(\mathbf{d}, \dot{\mathbf{d}})$$

Class p₂: Normal lane-keeping by A and B

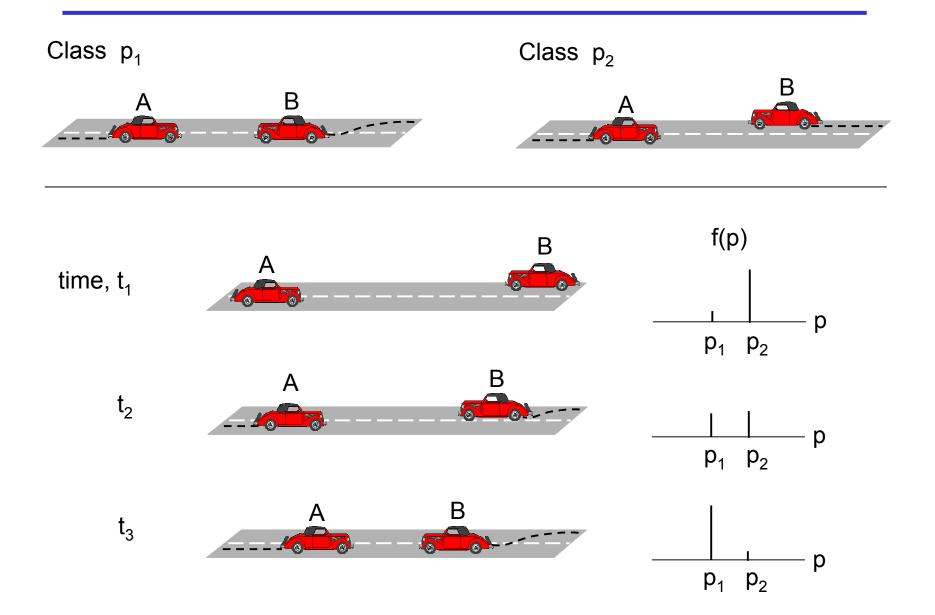
$$\dot{\mathbf{z}} = \mathbf{f}_{\text{norm}}(\mathbf{d}, \dot{\mathbf{d}})$$

$$\dot{\mathbf{z}} = f(d, \dot{d}, p) = \begin{cases} f_{fail}(d, \dot{d}), & \text{if } p = p_1 \\ \\ f_{norm}(d, \dot{d}), & \text{if } p = p_2 \end{cases}$$



$$x_{est} = \{ f(d, \dot{d}, p) \}$$

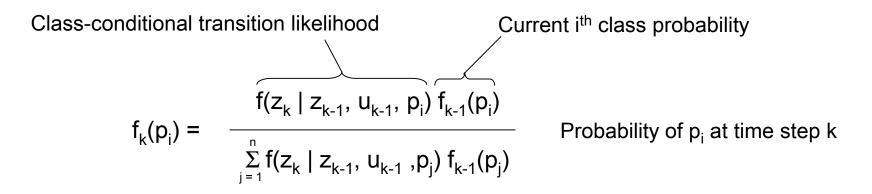
Class Parameter Distribution Updating



Bayes Updating of Class Parameter Distribution

Assuming Markov system → Require knowledge of previous state only

→ Update recursively



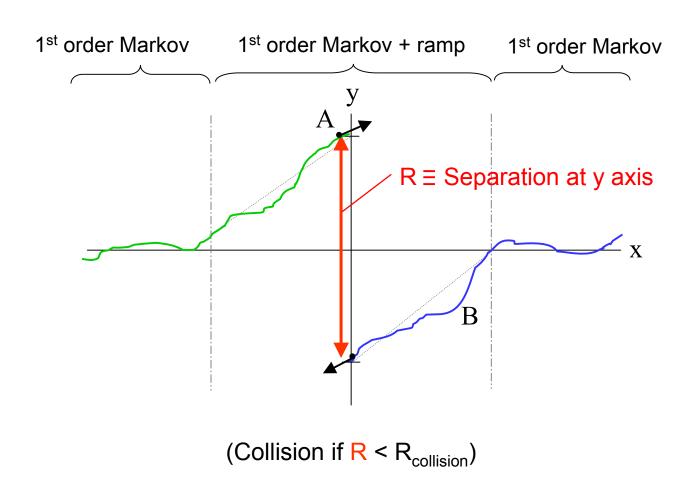
 Recursive solution also exists if the observation is an uncertain y, from f_{obs}(y | z), rather than z directly

Testbed System with Distinct Dynamic Classes

- Defined simple testbed system and alerting logic to
 - Implement and demonstrate Bayesian updating of class parameter distribution
 - Link choice of alert actions to class parameter distribution
- Testbed: Planar 2 "vehicle" encounter scenario
- Class parameter: 3 future trajectory classes
 - Normal, f_o(p_{normal}) = .9
 Vehicle A failed, f_o(p_{Afail}) = .05
 Vehicle B failed, f_o(p_{Bfail}) = .05
- $f(z_k | z_{k-1}, u_{k-1}, p_i)$ is from a defined Markov process

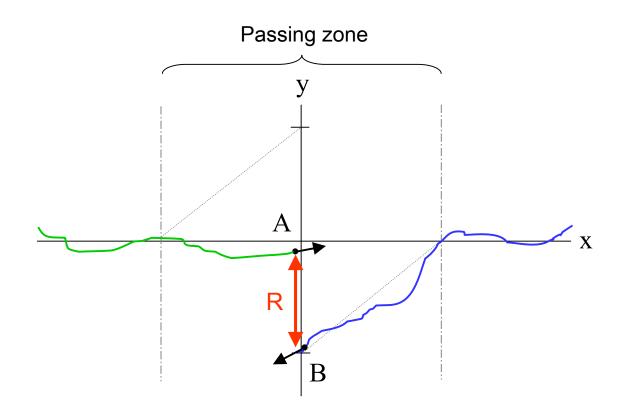
Testbed System with Classes

Normal Class: Vehicles approach from sides, and mean paths ramp apart so they tend to pass safely. Vehicles are responsive to maneuver commands.



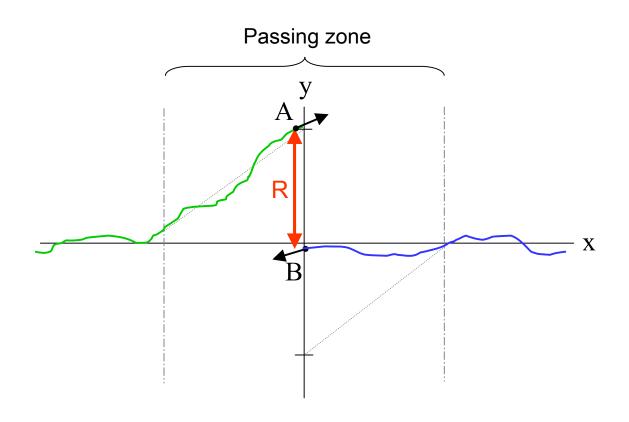
Testbed System with Classes

A Failure Class: Vehicle A disregards passing procedure and maneuver commands (if issued)

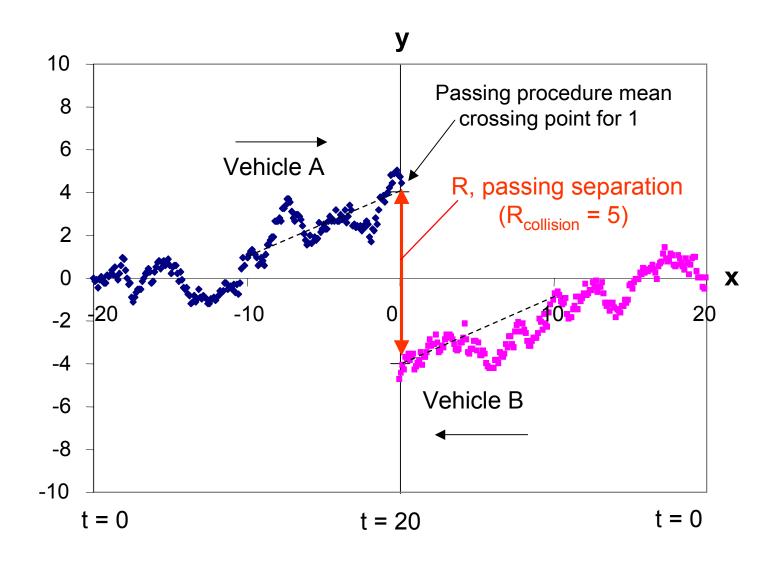


Testbed System with Classes

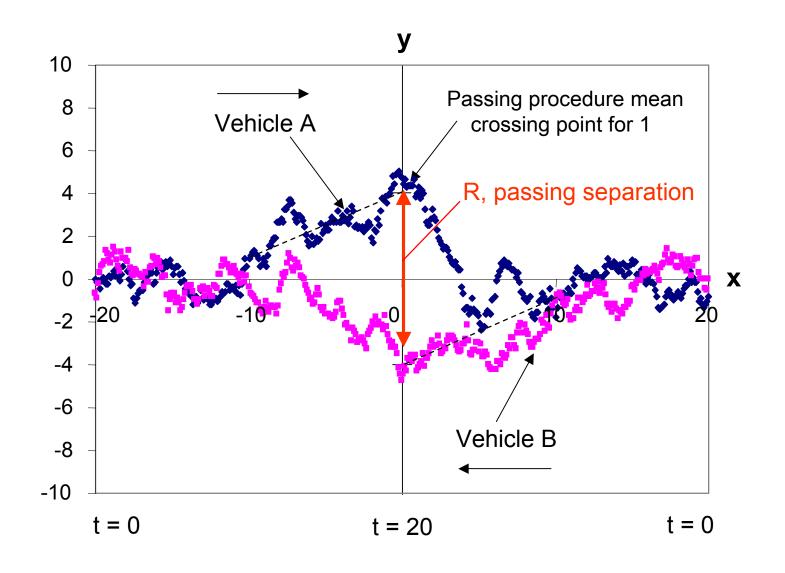
B Failure Class: Vehicle B disregards passing procedure and maneuver commands (if issued)



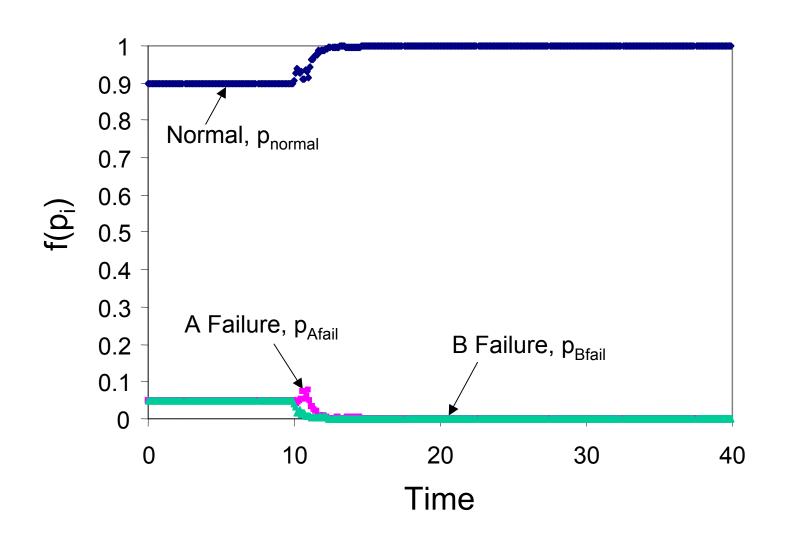
Simulated System Trajectory (Class p_{normal})



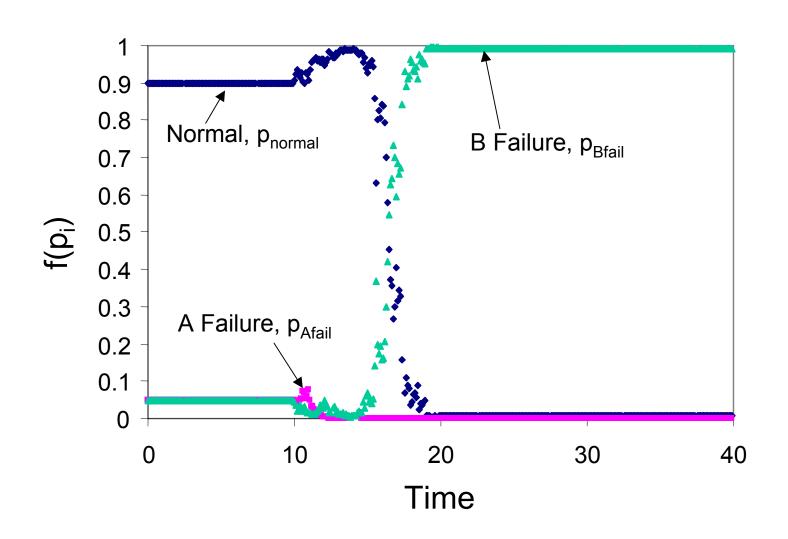
Simulated System Trajectory (Class p_{normal})



Bayes-Updated Class Distribution Trace (Class p_{normal})

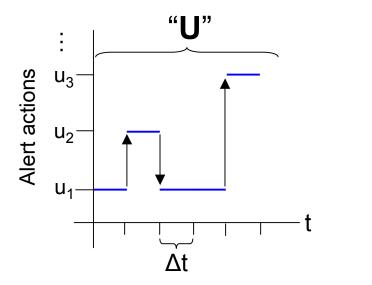


Bayes-Updated Class Distribution Trace (Class p_{Bfail})



Discrete Action Sequence, U

• U is a sequence of future alert actions.

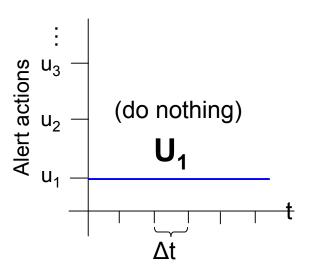


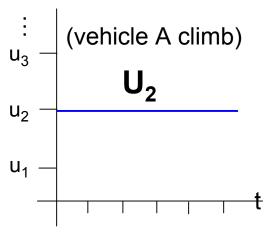
$$U = \{ u(1), u(2), u(3), ... \}$$

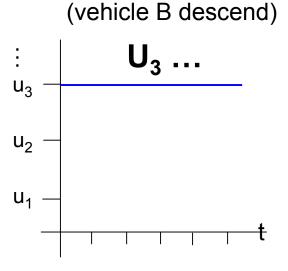
$$u(\bullet) \in \{ u_1, u_2, ... u_n \}$$
(e.g. A climb, B descend, do nothing...)

Limiting Scope of Action Sequence, U

- Difficult to consider all sequence options
 - For testbed system, considered a finite set of control sequences:
 Those of constant "u".
- Reduced U set:

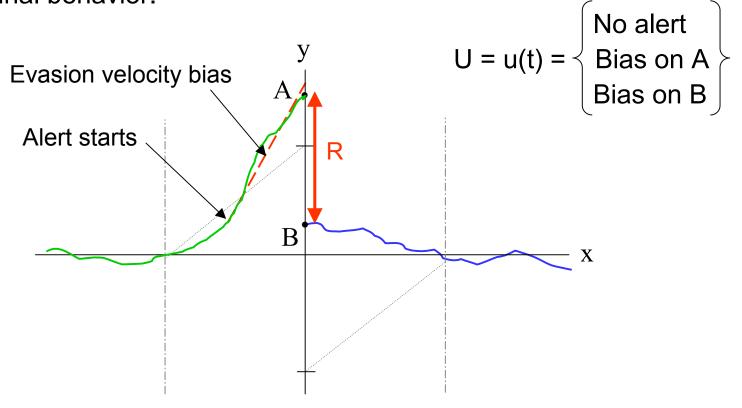






Testbed System Action Sequence (Evasion Maneuver) Set

Evasion maneuver: Apply a constant vertical velocity bias in place of nominal behavior.



Policy derived under assumption that future u(t) = constant

Calculating Expected Utilities for Testbed Policy

For testbed system, defined

- Utility of any collision = 0
- Utilities of having no collision with each alert option, U_i:

$$v_{\text{noalert}}$$
, v_{Abias} , v_{Bbias} and said $v_{\text{noalert}} > v_{\text{Abias}}$ and $v_{\text{Abias}} = v_{\text{Bbias}}$

Expected utilities for each U:

Logic: Choose U_i to maximize expected value

Collision Probabilities from Parameter Distribution

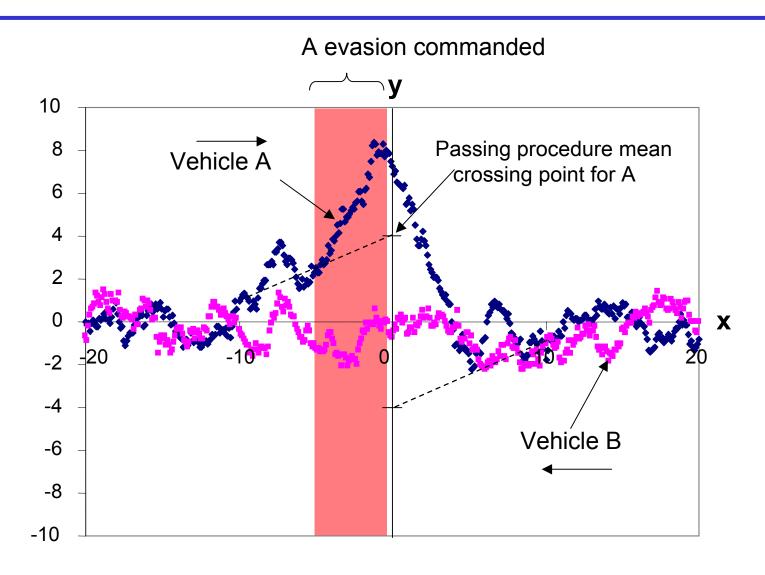
Compute probability of a collision (C) for each U

$$\begin{bmatrix} P(\text{collision} \mid \textbf{U}_1, \textbf{x}_{\text{est}}) \\ P(\text{collision} \mid \textbf{U}_2, \textbf{x}_{\text{est}}) \\ P(\text{collision} \mid \textbf{U}_3, \textbf{x}_{\text{est}}) \end{bmatrix} = \begin{bmatrix} P(\textbf{C} \mid \textbf{U}_1, \textbf{p}_{\text{normal}}, \textbf{z}) & P(\textbf{C} \mid \textbf{U}_1, \textbf{p}_{\text{Afail}}, \textbf{z}) & P(\textbf{C} \mid \textbf{U}_1, \textbf{p}_{\text{Bfail}}, \textbf{z}) \\ P(\textbf{C} \mid \textbf{U}_2, \textbf{p}_{\text{normal}}, \textbf{z}) & P(\textbf{C} \mid \textbf{U}_2, \textbf{p}_{\text{Afail}}, \textbf{z}) & P(\textbf{C} \mid \textbf{U}_2, \textbf{p}_{\text{Bfail}}, \textbf{z}) \\ P(\textbf{C} \mid \textbf{U}_3, \textbf{p}_{\text{normal}}, \textbf{z}) & P(\textbf{C} \mid \textbf{U}_3, \textbf{p}_{\text{Afail}}, \textbf{z}) & P(\textbf{C} \mid \textbf{U}_3, \textbf{p}_{\text{Bfail}}, \textbf{z}) \end{bmatrix} \begin{bmatrix} f(\textbf{p}_{\text{normal}}) \\ f(\textbf{p}_{\text{Afail}}) \\ f(\textbf{p}_{\text{Bfail}}) \end{bmatrix}$$

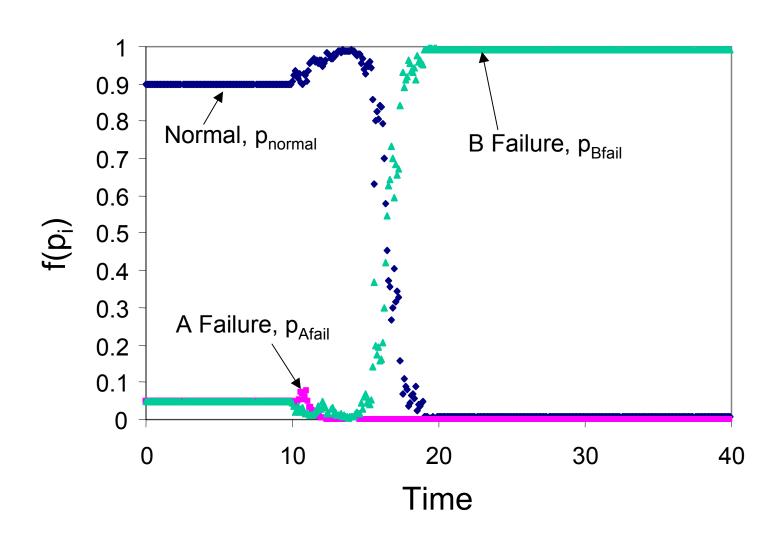
Class-conditional collision probabilities

Class distribution

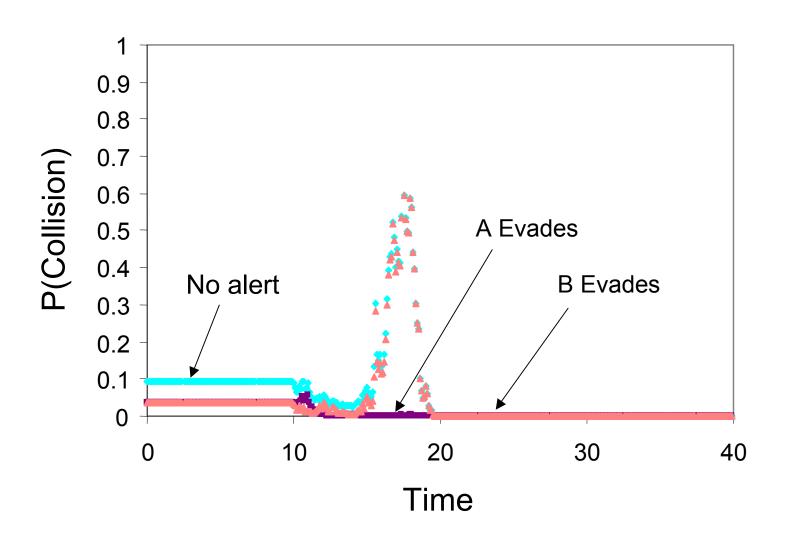
Simulated System Trajectory (Class p_{Bfail})



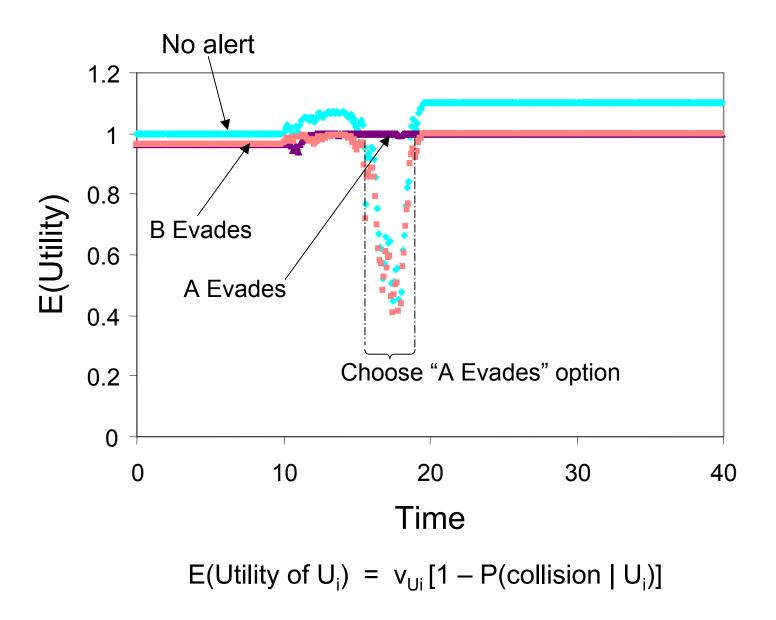
Bayes-Updated Class Distribution Trace (Class p_{Bfail})



Collision Probability Trace for Each U



Expected Utilities for Each U



Summary to Date

- Utility and probability-based framework allowing for dynamic classes and class distribution updating
- Testbed system with similarities to some difficult alerting problems
 - Multiple vehicles/humans requiring coordination
 - Identifiable classes of trajectories
 - Dynamic resolution guidance desired
- Initial alerting logic for testbed system

Future Work

 Apply distribution update techniques to more complex and realistic alerting problems

E.g.

- Car collision avoidance (intersections, lane incursions, run-off-road)
- Aircraft collision avoidance (En route, parallel approaches, runway incursions)
- Consider more sophisticated alerting policies
 - More complete sets of alert sequences, U
 - Policies that consider the value of anticipated information
 - Dynamic Decision Networks
- Compare model with existing alerting systems and concepts, identify differences and benefits, refine model

The End

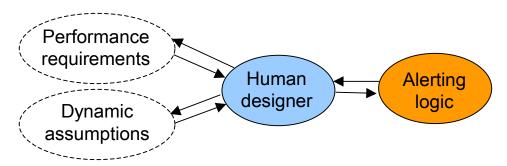
Automatic Alerting Systems

- Existing alerting systems (in aviation) target
 - Mid-air collisions
 - Controlled flight into terrain
 - Collisions due to parallel approach blunders
 - Wind shear accidents
 - Many other hazards
- Trend toward more alerting systems and more complex algorithms
 - Alert to avoid future hazard
 - Availability of computing power and state information
 - Desire to increase or maintain safety levels

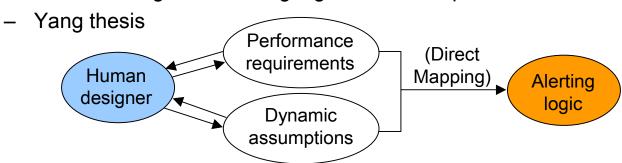
Design of Alerting Logics

- Most logics evolve from simple forms
 - Start with a simple baseline alert-triggering logic
 - Change incrementally so system behaves as desired in test scenarios
 - Field the system and adjust later to minimize user complaints

e.g. TCAS: 10 years from concept to fielding10 years of adjustment in field (to version 7.0)



- Would rather logic follow directly from explicit assumptions and requirements
 - Reduce design costs, bring logic closer to "optimal"?



Objectives

- Develop a novel design methodology applicable over a range of difficult alerting problems
 - Multiple humans/alerting subsystems to be coordinated
 - Dynamic resolution guidance desired
 - Identifiable distinct dynamic classes in the observed system (e.g. normal and failure)
 - Incorporate knowledge of structure in the nominal system
 - Procedures, rules of the road...
- Show agreement with and any advantages over evolved solutions to given problems (which presumably exhibit approximate "correct" alerting behavior)
 - TCAS
 - Proposed parallel approach alerting logics
 - Independent approaches
 - Dependent approaches
 - Others...

World State (x) Meaning

World State: Information about the world sufficient to know the future state or state distribution. (Markov state)

Short term prediction

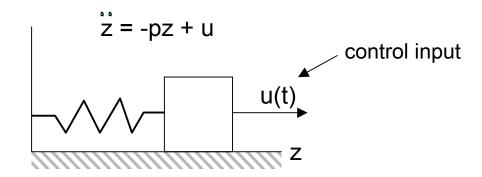
Need more information to extend prediction horizon

x = { position, velocity, road parameters, driver status... }

Some state variables may not be directly observable (e.g. driver status)

World State Estimate (x_{est}) is a Probability Density Function over x

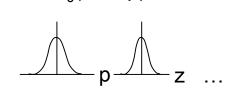
Illustration: Spring-mass system with uncertain parameter



•
$$x = \{z, \dot{z}, p\} \rightarrow x_{est} = \{\dot{z}, \dot{z}, \dot{p}\}$$
 ? No, $x_{est} = \{f(z, \dot{z}, p)\}$

No,
$$x_{est} = \{ f(z, \dot{z}, p) \}$$

Assume we know the prior distributions at t = 0:



 $f_0(z, \dot{z}, p)$

• Est. for for t>0:
$$x_{est}(t) = \{ f_t(z, z, p) \}$$

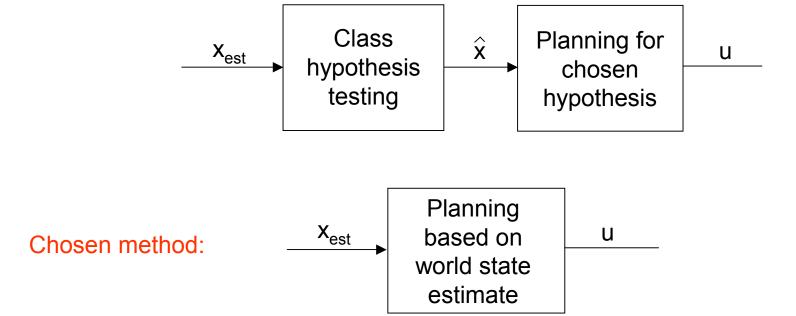
• Est. for for t>0: $x_{est}(t) = \{ f_t(z, \dot{z}, p) \}$ where $f_t(z, \dot{z}, p)$ is the posterior distribution of at time t

=
$$\{ \tau, f_0(z, z, p) \}$$
 where τ is trajectory $\{ z(t), u(t) \}$ for all t<0

Alerting Policy Design

 At each time step, choose the best action for the current world state estimate

Options



Policy for Testbed System: Simple Utility-based Approach

- Employ Maximum Expected Utility principle on a set of possible action sequences, { U₁, U₂, U₂... }
 - Update world state estimate
 - Determine expected utility of different U's from current state
 - Choose the action with the highest expected utility

```
 \underbrace{\text{E[ Utility of U}_{i}]}_{\text{E[ Utility of U}_{i}]} 
 \underbrace{\text{max[} \sum_{j} \text{P(outcome j | U}_{i}) \text{ Utility(outcome j)}]}_{j}
```

- Resembles resolution strategy of some logics (TCAS)
- Doesn't account for value of anticipated observations

General State Distribution Updating for Markovian System

For world state x, observation y, control input u

$$\hat{f}(x_k) = \sum_{X} P(x_k \mid x_{k-1}, u_{k-1}) f(x_{k-1})$$

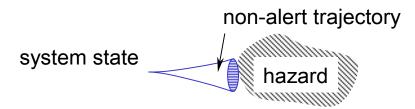
$$f(x_k) = \alpha P(y_k \mid x_k) \hat{f}(x_{k-1})$$

- $f(x_k)$ is the updated state distribution
- α is a normalization constant

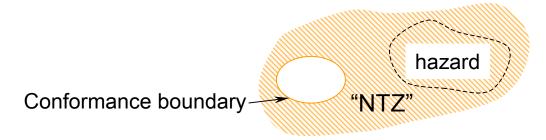
(From Russell & Norvig, AI, A Modern Approach)

Typical "Baseline Logics"

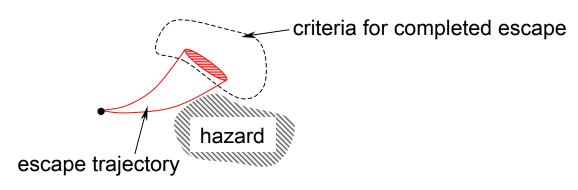
Alert to avert a hazard (AILS, TCAS?)



Alert when system fails to conform (PRM)

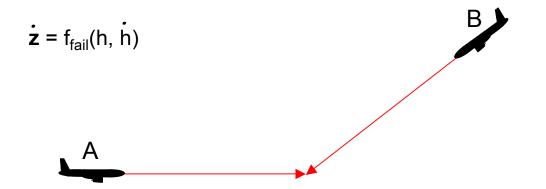


Alert before evasion options are lost (Carpenter, Tomlin)



Discretely Distributed World State Parameter: Aircraft Encounter Classes

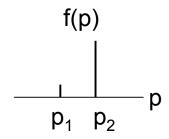
Class p₁: A and B lose vertical separation



Class p₂: A and B maintain vertical separation

$$\dot{z} = f_{\text{norm}}(h, \dot{h})$$

$$\dot{z} = f(h, \dot{h}, p) = \begin{cases} f_{fail}(h, \dot{h}), & \text{if } p = p_1 \\ \\ f_{norm}(h, \dot{h}), & \text{if } p = p_2 \end{cases}$$



$$x = \{ f(h, h, p) \}$$

State Parameter Distribution Updating

